Sean Morrison: A root and branch approach to stem cells
نویسنده
چکیده
T hroughout life, stem cells maintain themselves by dividing to produce one or two daughter stem cells with an identical developmental potential. Although this self-renewal process is fundamental to all types of stem cells, the precise mechanism varies between different tissues and stages of development. Sean Morrison examines the self-renewal of different types of stem cells to understand how the process declines with age and how it is hijacked by cancer cells to drive tumorigenesis. After a brief stint running a biotech company in his native Canada, Morrison's interest in stem cells began as a graduate student with Irv Weissman at Stanford University, where he developed new techniques to purify and characterize hematopoietic stem cells (1). He then adapted these techniques to the nervous system and neural crest stem cells as a postdoc with David Anderson at Caltech (2). In his own lab at the University of Michigan, Morrison goes back and forth between the blood and nervous systems, identifying new regulators of stem cell self-renewal and studying how their actions change during development and aging (3, 4). Morrison's lab also investigates the self-renewal of cancer stem cells that are proposed to drive tumor growth (5), while demonstrating that not all cancers follow this model of tumorigenesis (6). Morrison has challenged other commonly held assumptions too, such as the immortal strand hypothesis that daughter stem cells always inherit older copies of chromosomes (7). In a recent interview, Morrison discussed what his work has taught him about cancer and aging, and the importance of explaining stem cell research to the general public. Where did you grow up and what were your earliest experiences of science? I'm from Nova Scotia in Canada. I did a lot of sports and a lot of science fair projects growing up. My senior year high school project won national awards. It was on fungi called Mycorrhizae that colonize plant roots and enhance their ability to take up nutrients from the soil. The fungus is used agriculturally, but it was very expensive and diffi cult to grow. My lab partner and I thought we could grow the fungus more effectively using hydroponics and we ended up starting a company. The university where I did my undergraduate work, Dalhousie, gave us lab space, and we'd work on it full-time over the summer and part-time during the academic year. I'd run back and forth between the lab and classes, …
منابع مشابه
Stem Cells in Regenerative Endodontics
Background Currently, clinical endodontics includes procedures that are based on the ability of stem cells to accomplish repair (eg, direct pulp capping, apexogenesis, apexification, and even pulpal regeneration). An attempt is made to critically assess the current status in pulp regeneration therapy. Methods: Systematically, 2 distinctly different strategies exist involving stem cells for t...
متن کاملInvestigating the role of signaling pathways and cancer stem cells in esophageal cancer with a therapeutic approach
Esophageal cancer (EC) is the sixth main cause of cancer death worldwide. Important genes associated with esophageal cancer include FOXO3, AKT, and GSK3β. Excessive FOXO3 expression inhibits the proliferation of cancer cells. The expression of AKT is involved in controlling cell growth in tumors. GSK3β activity is higher in cancer tissues. Given the effective role of cancer stem cells (CSCs) in...
متن کاملسلولهای بنیادی bulge فولیکول مو: منبعی جدید برای بازسازی پوست
Emergence and spread of various diseases in the past century have been associated with many problems for the health care providers. Now a days, with advancement of technology, new methods such as cell therapy, are available, efficient and successful in some clinical areas. To use any cell, it is necessary to identify its source, so herein, we reviewed the literature of a new source of adult ste...
متن کاملStem cell potential: Can anything make anything?
Recent results suggest that stem cells from one tissue can give rise to cells from developmentally unrelated tissues. These results strongly support the idea that certain progenitors retain much broader developmental potentials than expected, and other progenitors may be able to acquire broader potentials in culture.
متن کاملP137: Stem Cell Therapy in Alzheimer’s Disease
Alzheimer disease (AD) is a progressive neurodegenerative brain disorder which plays an important role in neural cell destruction and as a result it causes memory loss in the patients. This disease is also the most common type of dementia which doesn’t completely respond to medical treatments so no certain cure is available. Recent studies show the advantages of using stem cells (SCs) in ...
متن کامل